Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Eur J Clin Pharmacol ; 78(11): 1823-1831, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166059

RESUMO

PURPOSE: In this study, the drug-drug interaction potential of vatiquinone with cytochrome P450 (CYP) substrates was investigated in both in vitro and clinical studies. METHODS: The inhibitory potential of vatiquinone on the activity of CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 was assessed in vitro. In an open-label, drug-drug interaction study in 18 healthy human subjects, a single oral dose of 500 mg tolbutamide and 40 mg omeprazole was administered on day 1, followed by a washout of 7 days. Multiple oral doses of 400 mg vatiquinone (three times a day [TID]) were administered from day 8 to day 13 with coadministration of a single oral dose of 500 mg tolbutamide and 40 mg omeprazole on day 12. RESULTS: In vitro, vatiquinone inhibited CYP2C9 (IC50 = 3.7 µM) and CYP2C19 (IC50 = 5.4 µM). In the clinical study, coadministration of vatiquinone did not affect the pharmacokinetic (PK) profile of tolbutamide and omeprazole. The 90% confidence intervals (CIs) of geometric least-square mean ratios for maximum plasma concentration (Cmax), areas under the plasma concentration-time curve (AUC0-t), and AUC0-inf of tolbutamide and omeprazole were entirely contained within the 80 to 125% no effect limit, except a minor excursion observed for Cmax of omeprazole (geometric mean ratio [GMR], 94.09; 90% CI, 78.70-112.50). Vatiquinone was generally well tolerated, and no clinically significant findings were reported. CONCLUSION: The in vitro and clinical studies demonstrated vatiquinone has a low potential to affect the pharmacokinetics of concomitantly administered medications that are metabolized by CYP enzymes.


Assuntos
Omeprazol , Tolbutamida , Área Sob a Curva , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Omeprazol/farmacologia , Tolbutamida/farmacocinética
2.
Phytomedicine ; 102: 154203, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660349

RESUMO

BACKGROUND: Gnaphalium affine D. Don extract (GAD) enhanced efficacy and reduced toxicity of benzbromarone (BBR) in combination use. However, little is known about effects of GAD on the pharmacokinetics (PKs) and metabolic enzymes of BBR. PURPOSE: To investigate the pharmacokinetic (PK) and pharmacodynamic (PD) mechanism of the herb-drug interactions (HDIs) between GAD and BBR. STUDY DESIGN AND METHODS: Intragastric single BBR (4.5 or 50 mg/kg), single BBR (4.5 or 50 mg/kg) + single GAD (450 mg/kg, 2 h after BBR-administration), or single BBR (4.5 or 50 mg/kg) + multiple GAD (450 mg/kg/day, once daily for 7 days) were administered to both sexes for BBR PK studies in normal rats. Intragastric multiple BBR (4.5 mg/kg/day), or multiple BBR (4.5 mg/kg/day) + multiple GAD (450 mg/kg/day, 2 h after BBR-administration) were administered for BBR PK and PD studies in male rats with hyperuricemic nephropathy (HN). The cumulative anti-hyperuricemic effects of BBR and BBR+GAD were determined by plasma uric acid (UA) concentration-time curve and area under curve (AUCUA). An in vivo cocktail approach was employed to determine the effects of GAD on cytochrome P450 (CYP) 2C11(9) and 1A2 - mediated drug metabolism. RESULTS: In normal rats, the repeated dose administration of GAD induced a significant increase of BBR AUC and prolonged the mean residence time (MRT) (p < 0.05). systemic exposure to BBR and metabolically derived hydroxybenzbromarones was significantly greater in female compared with male rats (p < 0.05). In HN rats, post-administration of GAD resulted in significantly higher bioavailability and enterohepatic recycling (ER) of BBR relative to the BBR alone administrated group from the prolongation of terminal elimination half-life (T1/2) and MRT of BBR (p < 0.05). Significantly higher urate-lowering effect of BBR+GAD compared with BBR alone was generally observed at post-dosing most time points with a maximal effect of 84.3% (acute treatment), 71.4% (7-day subchronic treatment) and 82.5% (14-day subchronic treatment) reduction in UA levels. Additionally, GAD showed a significant inhibitory effect on CYP2C11(9)-mediated tolbutamide (probe substrate) metabolism with ≥ 1.25 but < 2-fold increase in AUCtolbutamide. CONCLUSIONS: PD synergism demonstrated with the BBR+GAD combination could be explained by the PK interaction observed partially from CYP2C11(9)-mediation and enterohepatic recycling.


Assuntos
Gnaphalium , Interações Ervas-Drogas , Animais , Benzobromarona/farmacologia , Feminino , Masculino , Extratos Vegetais/farmacologia , Ratos , Tolbutamida/farmacocinética
3.
Drug Discov Ther ; 14(4): 204-208, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32863324

RESUMO

To investigate the effect of fluorine substitution on tolbutamide (TB) hydroxylation catalyzed by CYP2C9, the hydroxylation of TB and its fluorinated derivative 3'-fluoro-tolbutamide (3'-F-TB) by recombinant human CYP2C9*1, CYP2C9*2, and CYP2C9*3 was analyzed. In general, fluorine substitution near the metabolic site may decrease enzymatic oxidation owing to its electron-withdrawing nature. Fluorine substitution reduced the Michaelis-Menten-derived Km of 4'-hydroxylation of TB catalyzed by CYP2C9*1 from 115 (TB) to 77 (3'-F-TB) µM. In the case of TB hydroxylation catalyzed by CYP2C9*2, the Km value of TB was also reduced by fluorine substitution from 129 to 88 µM. The greatest effect of fluorine substitution on the Km in TB hydroxylation was observed in the catalysis by CYP2C9*3, in which the Km value decreased from 287 to 117 µM. When a mixture containing TB and 3'-F-TB was hydroxylated by CYP2C9, the hydroxylated metabolite ratio in CYP2C9*3 was significantly increased compared with that in CYP2C9*1 and CYP2C9*2 (p < 0.01, Tukey-Kramer test). These results suggest that obtaining the metabolite profiles of fluorine-substituted analogs of the key substrate molecule may be useful as a new tool for phenotyping polymorphic CYP isoforms.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Flúor/química , Polimorfismo Genético , Tolbutamida/farmacocinética , Citocromo P-450 CYP2C9/genética , Humanos , Hidroxilação , Oxirredução , Fenótipo , Tolbutamida/química
4.
Drug Metab Pharmacokinet ; 35(5): 425-431, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32788076

RESUMO

Hemoglobin-vesicles (Hb-V), hemoglobin encapsulated within a liposome, were developed as an artificial red blood cell (RBC). When Hb-V becomes clinically available in the future, patients would presumably be co-administered with one or more drugs. Since drug-drug interactions can cause serious adverse effects and impede overall curative effects, evidence regarding the risk associated with drug-drug interactions between Hb-V and such simultaneously administered drugs is needed. Therefore, we report on cytochrome P450 (CYP)-based drug interactions with Hb-V in healthy rats. At 1 day after the saline, Hb-V or packed RBC (PRBC) administration, the blood retention of CYP-metabolizing drugs (caffeine, chlorzoxazone, tolbutamide and midazolam) were moderately prolonged in the case of the Hb-V group, but not the PRBC group, compared to saline group. The results of a proteome analysis revealed that the Hb-V administration had only negligible effects on the protein expression of CYPs in the liver. Hb-V administration, however, clearly suppressed the CYP metabolic activity of the four target CYP isoforms compared with the saline and PRBC group. However, these alterations were nearly recovered at 7 day after the Hb-V administration. Taken together, these results suggest that the administration of Hb-V slightly and transiently affects the CYP-based metabolism of the above drugs.


Assuntos
Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Hemoglobinas/metabolismo , Midazolam/farmacocinética , Tolbutamida/farmacocinética , Animais , Cafeína/química , Clorzoxazona/química , Sistema Enzimático do Citocromo P-450/química , Interações Medicamentosas , Hemoglobinas/química , Lipossomos/química , Lipossomos/metabolismo , Masculino , Midazolam/química , Ratos , Ratos Sprague-Dawley , Tolbutamida/química
5.
J Agric Food Chem ; 68(18): 5212-5220, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285669

RESUMO

Botanical dietary supplements produced from hops (Humulus lupulus) containing the chemopreventive compound xanthohumol and phytoestrogen 8-prenylnaringenin are used by women to manage menopausal symptoms. Because of the long half-lives of prenylated hop phenols and reports that they inhibit certain cytochrome P450 enzymes, a botanically authenticated and chemically standardized hop extract was tested for Phase I pharmacokinetic drug interactions. Sixteen peri- and postmenopausal women consumed the hop extract twice daily for 2 weeks, and the pharmacokinetics of tolbutamide, caffeine, dextromethorphan, and alprazolam were evaluated before and after supplementation as probe substrates for the enzymes CYP2C9, CYP1A2, CYP2D6, and CYP3A4/5, respectively. The observed area under the time-concentration curves were unaffected, except for alprazolam which decreased 7.6% (564.6 ± 46.1 h·µg/L pre-hop and 521.9 ± 36.1 h·µg/L post-hop; p-value 0.047), suggesting minor induction of CYP3A4/5. No enzyme inhibition was detected. According to FDA guidelines, this hop dietary supplement caused no clinically relevant pharmacokinetic interactions with respect to CYP2C9, CYP1A2, CYP2D6, or CYP3A4/5. The serum obtained after consumption of the hop extract was analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry to confirm compliance. Abundant Phase II conjugates of the hop prenylated phenols were observed including monoglucuronides and monosulfates as well as previously unreported diglucuronides and sulfate-glucuronic acid diconjugates.


Assuntos
Suplementos Nutricionais/análise , Interações Ervas-Drogas , Humulus/química , Perimenopausa/efeitos dos fármacos , Extratos Vegetais/farmacocinética , Pós-Menopausa/efeitos dos fármacos , Adulto , Idoso , Cafeína/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dextrometorfano/farmacocinética , Feminino , Humanos , Pessoa de Meia-Idade , Perimenopausa/genética , Perimenopausa/metabolismo , Extratos Vegetais/administração & dosagem , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , Tolbutamida/farmacocinética
6.
Biomater Sci ; 8(1): 426-437, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746843

RESUMO

The mechanical and electrical stimuli have a profound effect on the cellular behavior and function. In this study, a series of conductive nanofibrous scaffolds are developed by blend electrospinning of poly(styrene-co-maleic acid) (PSMA) and multiwalled-carbon nanotubes (CNTs), followed by grafting galactose as cell adhesion cues. When the mass ratios of CNTs to PSMA increase up to 5%, the alignment, Young's modulus and conductivity of fibrous scaffolds increase, whereas the average diameter, pore size and elongation at break decrease. Primary hepatocytes cultured on the scaffolds are self-assembled into 3D spheroids, which restores the hepatocyte polarity and sufficient expression of drug metabolism enzymes over an extended period of time. Among these conductive scaffolds, hepatocytes cultured on fibers containing 3% of CNTs (F3) show the highest clearance rates of model drugs, offering a better prediction of the in vivo data with a high correlation value. Moreover, the drug metabolism capability is maintained over 15 days and is more sensitive towards the inducers and inhibitors of metabolizing enzymes, demonstrating the applicability for drug-drug interaction studies. Thus, this culture system has been demonstrated as a reliable in vitro model for high-throughput screening of metabolism and toxicity in the early phases of drug development.


Assuntos
Hepatócitos/citologia , Nanotubos de Carbono/química , Esferoides Celulares/citologia , Animais , Polaridade Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Maleatos , Poliestirenos , Ratos , Esferoides Celulares/efeitos dos fármacos , Engenharia Tecidual , Tecidos Suporte , Tolbutamida/farmacocinética , Varfarina/farmacocinética
7.
Biopharm Drug Dispos ; 40(7): 225-233, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31215040

RESUMO

The study examined the effect of doxorubicin (DOX) on the hepatic expression of CYP2C and its activity for metabolizing tolbutamide (TB), a specific CYP2C substrate, in rats and whether the pharmacokinetics of tolbutamide were altered by doxorubicin exposure. The expression level of hepatic CYP2C11 was depressed 1 day after doxorubicin administration (day 1), and this effect on CYP2C11 was augmented on day 4. However, the expression level of hepatic CYP2C6 remained unchanged. The activity of tolbutamide 4-hydroxylation in hepatic microsomes was decreased with time following doxorubicin administration. Regarding the enzyme kinetic parameters for tolbutamide 4-hydroxylation on day 4, the maximum velocity (Vmax ) was significantly lower in the DOX group than that in the control group, while the Michaelis constant (Km ) was unaffected. On pharmacokinetic examination, the total clearance (CLtot ) of tolbutamide on day 4 was increased, despite the decreased metabolic capacity. On the other hand, the serum unbound fraction (fu ) of tolbutamide was elevated with a reduced serum albumin concentration in the DOX group. Contrary to CLtot , CLtot /fu , a parameter approximated to the hepatic intrinsic clearance of unbound tolbutamide, was estimated to be significantly reduced in the DOX group. These findings indicate that the metabolic capacity of CYP2C11 in the liver is depressed time-dependently by down-regulation after doxorubicin exposure in rats, and that the decreased enzyme activity of TB 4-hydroxylation in hepatic microsomes reflects the pharmacokinetic change of unbound tolbutamide, not total tolbutamide, in serum.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hipoglicemiantes/farmacocinética , Tolbutamida/farmacocinética , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Interações Medicamentosas , Hidroxilação/efeitos dos fármacos , Hipoglicemiantes/sangue , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Albumina Sérica/metabolismo , Esteroide 16-alfa-Hidroxilase/metabolismo , Tolbutamida/sangue
8.
Eur J Drug Metab Pharmacokinet ; 44(6): 787-796, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31175627

RESUMO

BACKGROUND AND OBJECTIVES: Honokiol, a major constituent isolated from Magnolia officinalis, is regarded as a phytochemical marker and bioactive substance present in many traditional Chinese medicines. However, the effect of honokiol on cytochrome P450 (CYP) has not been thoroughly investigated. The aim of this study was to investigate the effect of honokiol on CYP1A2 and CYP2C11 in vitro and in vivo. METHODS: The effect of honokiol on CYP1A2 and CYP2C11 was investigated with rat liver microsomes (RLMs) by measuring phenacetin and tolbutamide metabolism (probe drugs for CYP1A2 and CYP2C11, respectively), and then explored in vivo by measuring the effect of honokiol (2.5 and 5 mg/kg, intravenous injection) on the pharmacokinetics of theophylline and tolbutamide (probe drugs for CYP1A2 and CYP2C11, respectively) in rats in vivo. RESULTS: Honokiol inhibited the formation of acetaminophen from phenacetin and 4-hydroxytolbutamide from tolbutamide in RLMs, with inhibition constant (Ki) values of 1.6 µM and 16.5 µM, respectively. In vivo, honokiol (2.5 or 5.0 mg/kg) increased the half-life (t1/2) of theophylline by 40.9% and 119.9%, decreased the clearance (CL) by 23.8% and 42.9%, and increased the area under the curve (AUC) by 41.3% and 83.4%, respectively. Similarly, the t1/2 of tolbutamide increased by 25.5% and 33.8%, the CL decreased by 14.3% and 19.1%, and the AUC increased by 19.2% and 25.7%, respectively. CONCLUSION: The inhibition of CYP1A2 by honokiol is greater than the inhibition of CYP2C11. The changes in the pharmacokinetics of theophylline and tolbutamide in rats treated with honokiol are due to the inhibition of CYP1A2 and CYP2C11 activity in a dose-dependent manner.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Família 2 do Citocromo P450/antagonistas & inibidores , Lignanas/farmacologia , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidores , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacocinética , Citocromo P-450 CYP1A2 , Citocromos/antagonistas & inibidores , Lignanas/química , Lignanas/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Teofilina/farmacocinética , Tolbutamida/farmacocinética
9.
Clin Pharmacol Ther ; 106(6): 1280-1289, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099895

RESUMO

We conducted a comprehensive in vivo study evaluating the influence of type 2 diabetes (T2D) on major cytochrome P450 (CYP450) activities. These activities were assessed in 38 T2D and 35 non-T2D subjects after a single oral administration of a cocktail of probe drugs: 100 mg caffeine (CYP1A2), 100 mg bupropion (CYP2B6), 250 mg tolbutamide (CYP2C9), 20 mg omeprazole (CYP2C19), 30 mg dextromethorphan (CYP2D6), 2 mg midazolam (CYP3As), and 250 mg chlorzoxazone (alone; CYP2E1). Mean metabolic activity for CYP2C19, CYP2B6, and CYP3A was decreased in subjects with T2D by about 46%, 45%, and 38% (P < 0.01), respectively. CYP1A2 and CYP2C9 activities seemed slightly increased in subjects with diabetes, and no difference was observed for CYP2D6 or CYP2E1 activities. Several covariables, such as inflammatory markers (interleukin (IL)-1ß, IL-6, gamma interferon, and tumor necrosis factor alpha), genotypes, and diabetes-related and demographic-related factors were considered in our analyses. Our results indicate that low chronic inflammatory status associated with T2D modulates CYP450 activities in an isoform-specific manner.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Adulto , Idoso , Bupropiona/farmacocinética , Cafeína/farmacocinética , Estudos de Casos e Controles , Clorzoxazona/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/farmacocinética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Midazolam/farmacocinética , Pessoa de Meia-Idade , Omeprazol/farmacocinética , Tolbutamida/farmacocinética , Fator de Necrose Tumoral alfa/metabolismo
10.
Support Care Cancer ; 27(3): 819-827, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30084103

RESUMO

PURPOSE: Rolapitant is a neurokinin-1 receptor antagonist indicated in combination with other antiemetic agents in adults for the prevention of delayed chemotherapy-induced nausea and vomiting. We evaluated the effects of rolapitant oral on the pharmacokinetics of probe substrates for cytochrome P450 (CYP) 2D6 (dextromethorphan), 2C9 (tolbutamide), 2C19 (omeprazole), 2B6 (efavirenz), and 2C8 (repaglinide) in healthy subjects. METHODS: This open-label, multipart, randomized, phase 1 study assessed cohorts of 20-26 healthy subjects administered dextromethorphan, tolbutamide plus omeprazole, efavirenz, or repaglinide with and without single, oral doses of rolapitant. Maximum plasma analyte concentrations (Cmax) and area under the plasma analyte concentration-time curves (AUC) were estimated using noncompartmental analysis, and geometric mean ratios (GMRs) and 90% confidence intervals for the ratios of test (rolapitant plus probe substrate) to reference (probe substrate alone) treatment were calculated. RESULTS: Rolapitant significantly increased the systemic exposure of dextromethorphan in terms of Cmax and AUC0-inf by 2.2- to 3.3-fold as observed in GMRs on days 7 and 14. Rolapitant did not affect systemic exposure of tolbutamide, and minor excursions outside of the 80-125% no effect limits were detected for omeprazole, efavirenz, and repaglinide. CONCLUSIONS: Inhibition of dextromethorphan by a single oral dose of rolapitant 180 mg is clinically significant and can last at least 7 days. No clinically significant interaction was observed between rolapitant and substrates of CYP2C9, CYP2C19, CYP2B6, or CYP2C8. CYP2D6 substrate drugs with a narrow therapeutic index may require monitoring for adverse reactions if given concomitantly with rolapitant.


Assuntos
Antieméticos/farmacologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Compostos de Espiro/farmacologia , Administração Oral , Adolescente , Adulto , Alcinos , Benzoxazinas/farmacocinética , Carbamatos/farmacocinética , Ciclopropanos , Citocromo P-450 CYP2B6/efeitos dos fármacos , Citocromo P-450 CYP2C19/efeitos dos fármacos , Citocromo P-450 CYP2C8/efeitos dos fármacos , Citocromo P-450 CYP2C9/efeitos dos fármacos , Citocromo P-450 CYP2D6/efeitos dos fármacos , Dextrometorfano/farmacocinética , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Sondas Moleculares/farmacocinética , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Omeprazol/farmacocinética , Piperidinas/farmacocinética , Tolbutamida/farmacocinética , Adulto Jovem
11.
Xenobiotica ; 49(8): 905-911, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30231664

RESUMO

Shuanghuanglian Injection (SHLI), one of the most popular herbal prescription in China, has been commonly used to treat pneumonia, tonsillitis, and other respiratory diseases caused by bacterium and virus. This study is to investigate the effects of SHLI on the activities of Cytochrome P450 (CYP) 1A2, 2C11, 2D1 and 3A1/2 in rats. Sixteen rats were randomly divided into two groups (SHLI-treated and blank control). They were administered SHLI or physiological saline for consecutive seven days. On day eight, 16 animals were administrated cocktail drugs as probe substrates of the four CYP in vivo. In addition, other four probe drugs were added, respectively, into incubation systems of rat liver microsomes (RLM) to assess the effects of SHLI on the four CYP isoforms in vitro. SHLI exhibited an inductive effect on CYP2C11 in vivo by decreasing Cmax, t1/2 and AUC0-∞ of tolbutamide, while the main pharmacokinetic parameters of caffeine, metoprolol and dapsone have no significant changes. In vitro study, SHLI showed no significant effects on the activities of CYP1A2, 2D1 and 3A1/2, but increasing the metabolism of tolbutamide in RLM. SHLI induced the activities of CYP2C11, but had no significant effects on the activities of CYP1A2, CYP2D1 and CYP3A1/2 in rats.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Injeções , Animais , Cafeína/sangue , Cafeína/farmacocinética , Cafeína/farmacologia , Calibragem , Dapsona/sangue , Dapsona/farmacocinética , Limite de Detecção , Masculino , Metaboloma , Metoprolol/sangue , Metoprolol/farmacocinética , Ratos Wistar , Reprodutibilidade dos Testes , Fatores de Tempo , Tolbutamida/sangue , Tolbutamida/farmacocinética
12.
Biopharm Drug Dispos ; 39(7): 321-327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29978919

RESUMO

As there are to be known gender differences in the expression profiles of rat hepatic CYP2C, we examined the pharmacokinetic behavior of tolbutamide (TB), a typical probe for CYP2C, and hepatic enzyme activities for metabolizing TB in female rats to compare with male rats. On the pharmacokinetic analysis of TB after intravenous administration to female rats, the elimination rate constant at the terminal phase (ke ), total clearance (CLtot ) and the apparent volume of distribution at steady-state (Vdss ) were significantly lower than in male rats. The binding rates of TB to serum protein were similar in male and female rats, indicating that the change in unbound TB concentration in serum is not associated with the difference in the pharmacokinetic disposition of TB. On metabolic examination using hepatic microsomes, the maximum reaction velocity (Vmax ) of the metabolic conversion from TB to 4-hydroxytolbutamide (4-OH-TB) in female rats was lower than that in male rats, although there was no significant difference in the Michaelis constant (Km ) between genders. Consistent with this, the Vmax -to-Km ratio (Vmax /Km ) was significantly lower in female rats than in male rats. Therefore, the low in vitro CYP2C-dependent activity for hepatic TB removal in female rats provided a clear explanation for the lower in vivo elimination clearance of TB. Our findings strongly suggest that there is a gender difference in the metabolic capacity to eliminate drugs that serve as substrates of hepatic CYP2C enzymes in rats.


Assuntos
Hipoglicemiantes/farmacocinética , Tolbutamida/farmacocinética , Administração Intravenosa , Animais , Proteínas Sanguíneas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hipoglicemiantes/sangue , Cinética , Masculino , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Tolbutamida/sangue
13.
Acta Pharmacol Sin ; 39(9): 1522-1532, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29644999

RESUMO

Liver metabolism is commonly considered the major determinant in drug discovery and development. Many in vitro drug metabolic studies have been developed and applied to understand biotransformation. However, these methods have disadvantages, resulting in inconsistencies between in vivo and in vitro experiments. A major factor is that they are static systems that do not consider the transport process in the liver. Here we developed an in vitro dynamic metabolic system (Bio-PK metabolic system) to mimic the human pharmacokinetics of tolbutamide. Human liver microsomes (HLMs) encapsulated in a F127'-Acr-Bis hydrogel (FAB hydrogel) were placed in the incubation system. A microdialysis sampling technique was used to monitor the metabolic behavior of tolbutamide in hydrogels. The measured results in the system were used to fit the in vitro intrinsic clearance of tolbutamide with a mathematical model. Then, a PBPK model that integrated the corresponding in vitro intrinsic clearance was developed to verify the system. Compared to the traditional incubation method, reasonable PK profiles and the in vivo clearance of tolbutamide could be predicted by integrating the intrinsic clearance of tolbutamide obtained from the Bio-PK metabolic system into the PBPK model. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC), time to reach the maximum plasma concentration (Tmax) and in vivo clearance were consistent with the clinically observed data. This novel in vitro dynamic metabolic system can compensate for some limitations of traditional incubation methods; it may provide a new method for screening compounds and predicting pharmacokinetics in the early stages, supporting the development of compounds.


Assuntos
Microssomos Hepáticos/metabolismo , Tolbutamida/farmacocinética , Difusão , Feminino , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Masculino , Microdiálise/métodos , Modelos Teóricos , Poloxâmero/síntese química , Poloxâmero/química , Tolbutamida/metabolismo
14.
J Pharmacol Exp Ther ; 364(3): 390-398, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326367

RESUMO

Tolbutamide is primarily metabolized by CYP2C9, and, thus, is frequently applied as a clinical probe substrate for CYP2C9 activity. However, there is a marked discrepancy in the in vitro-in vivo extrapolation of its metabolic clearance, implying a potential for additional clearance mechanisms. The goal of this study was to evaluate the role of hepatic uptake transport in the pharmacokinetics of tolbutamide and to identify the molecular mechanism thereof. Transport studies using singly transfected cells expressing six major hepatic uptake transporters showed that tolbutamide is a substrate to organic anion transporter 2 (OAT2) alone with transporter affinity [Michaelis-Menten constant (Km)] of 19.5 ± 4.3 µM. Additionally, OAT2-specific transport was inhibited by ketoprofen (an OAT2 inhibitor) and 1 mM rifamycin SV (pan inhibitor), but not by cyclosporine and rifampicin (OAT polypeptides/Na+-taurocholate cotransporting polypeptide inhibitors). Uptake studies in primary human hepatocytes confirmed the predominant role of OAT2 in the active uptake with significant inhibition by rifamycin SV and ketoprofen, but not by the other inhibitors. Concentration-dependent uptake was noted in human hepatocytes with active transport characterized by Km and Vmax values of 39.3 ± 6.6 µM and 426 ± 30 pmol/min per milligram protein, respectively. Bottom-up physiologically based pharmacokinetic modeling was employed to verify the proposed role of OAT2-mediated hepatic uptake. In contrast to the rapid equilibrium (CYP2C9-only) model, the permeability-limited (OAT2-CYP2C9 interplay) model better described the plasma concentration-time profiles of tolbutamide. Additionally, the latter well described tolbutamide pharmacokinetics in carriers of CYP2C9 genetic variants and quantitatively rationalized its known drug-drug interactions. Our results provide first-line evidence for the role of OAT2-mediated hepatic uptake in the pharmacokinetics of tolbutamide, and imply the need for additional clinical studies in this direction.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Tolbutamida/metabolismo , Transporte Biológico , Células HEK293 , Hepatócitos/metabolismo , Humanos , Distribuição Tecidual , Tolbutamida/farmacocinética , Tolbutamida/farmacologia
15.
Eur J Drug Metab Pharmacokinet ; 43(3): 355-367, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29119333

RESUMO

BACKGROUND AND OBJECTIVES: Cytochrome P450 2C9 (CYP2C9) is involved in the biotransformation of many commonly used drugs, and significant drug interactions have been reported for CYP2C9 substrates. Previously published physiologically based pharmacokinetic (PBPK) models of tolbutamide are based on an assumption that its metabolic clearance is exclusively through CYP2C9; however, many studies indicate that CYP2C9 metabolism is only responsible for 80-90% of the total clearance. Therefore, these models are not useful for predicting the magnitude of CYP2C9 drug-drug interactions (DDIs). This paper describes the development and verification of SimCYP®-based PBPK models that accurately describe the human pharmacokinetics of tolbutamide when dosed alone or in combination with the CYP2C9 inhibitors sulfaphenazole and tasisulam. METHODS: A PBPK model was optimized in SimCYP® for tolbutamide as a CYP2C9 substrate, based on published in vitro and clinical data. This model was verified to replicate the magnitude of DDI reported with sulfaphenazole and was further applied to simulate the DDI with tasisulam, a small molecule investigated for the treatment of cancer. A clinical study (CT registration # NCT01185548) was conducted in patients with cancer to assess the pharmacokinetic interaction of tasisulum with tolbutamide. A PBPK model was built for tasisulam, and the clinical study design was replicated using the optimized tolbutamide model. RESULTS: The optimized tolbutamide model accurately predicted the magnitude of tolbutamide AUC increase (5.3-6.2-fold) reported for sulfaphenazole. Furthermore, the PBPK simulations in a healthy volunteer population adequately predicted the increase in plasma exposure of tolbutamide in patients with cancer (predicted AUC ratio = 4.7-5.4; measured mean AUC ratio = 5.7). CONCLUSIONS: This optimized tolbutamide PBPK model was verified with two strong CYP2C9 inhibitors and can be applied to the prediction of CYP2C9 interactions for novel inhibitors. Furthermore, this work highlights the utility of mechanistic models in navigating the challenges in conducting clinical pharmacology studies in cancer patients.


Assuntos
Benzamidas/farmacocinética , Citocromo P-450 CYP2C9/metabolismo , Sulfafenazol/farmacocinética , Sulfonamidas/farmacocinética , Tolbutamida/farmacocinética , Benzamidas/uso terapêutico , Ensaios Clínicos como Assunto , Interações Medicamentosas/fisiologia , Humanos , Modelos Biológicos , Sulfafenazol/uso terapêutico , Sulfonamidas/uso terapêutico , Tolbutamida/uso terapêutico
16.
Xenobiotica ; 48(1): 53-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28051340

RESUMO

1. We investigated the change in the pharmacokinetic profile of tolbutamide (TB), a substrate for CYP2C6/11, 4 days after single administration of 5-fluorouracil (5-FU), and the hepatic gene expression and activity of CYP2C6/11 were also examined in 5-FU-pretreated rats. 2. Regarding the pharmacokinetic parameters of the 5-FU group, the area under the curve (AUC) was significantly increased, and correspondingly, the elimination rate constant at the terminal phase (ke) was significantly decreased without significant change in the volume of distribution at the steady state (Vdss). 3. The metabolic production of 4-hydroxylated TB in hepatic microsomes was significantly reduced by the administration of 5-FU. 4. The expression level of mRNAs for hepatic CYP2C6 and CYP2C11 was significantly lower than in the control group when the rats were pretreated with 5-FU. 5. These results demonstrated that the pharmacokinetic profile of TB was altered by the treatment with 5-FU through a metabolic process, which may be responsible for the decreased CYP2C6/11 expression at mRNA levels.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Fluoruracila/farmacocinética , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Esteroide 16-alfa-Hidroxilase/metabolismo , Tolbutamida/farmacocinética , Animais , Área Sob a Curva , Hidroxilação , Microssomos Hepáticos/metabolismo , Ratos
17.
Colloids Surf B Biointerfaces ; 161: 67-72, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040836

RESUMO

The main purpose of present study was to develop novel chitosan-modified polylactic-co-glycolicacid nanoparticles (CS@PLGA NPs) for improving the bio-availability of tolbutamide (TOL). The TOL-loaded CS@PLGA NPs (TOL-CS@PLGA NPs) were fabricated with the solvent evaporation method. The cargo-free CS@PLGA NPs showed a diameter of 228.3±2.5nm monitored with a laser light particlesizer, and the transmission electron microscope (TEM) photographs revealed their "core-shell" structures. The Zeta potential of the original PLGA NPs and the cargo-free CS@PLGA NPs was measured to be -20.2±3.21mV and 24.2±1.1mV, respectively. The changes in Zeta potential indicated the CS chains were coated on the surfaces of the original PLGA NPs. The thermal gravity analysis (TGA) curves suggested that the CS chains improved the thermostability of the original PLGA NPs. The results of cells viability indicated the cargo-free CS@PLGA NPs were nontoxicity. The in vitro release profiles suggested that TOL-CS@PLGA NPs could release TOL in pH 7.4 phosphate buffer solution (PBS) at a sustained manner. Streptozotocin (STZ) was employed to build the diabetic rat models. The physiological changes in the islet ß cells confirmed the obtaining of diabetic rats. After treatment by gavage, the TOL-CS@PLGA NPs showed an excellent hypoglycemic effect. Therefore, the TOL-CS@PLGA NPs had a potential application in oral delivery of TOL.


Assuntos
Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Tolbutamida/administração & dosagem , Administração Oral , Animais , Glicemia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Propriedades de Superfície , Tolbutamida/química , Tolbutamida/farmacocinética
18.
Chem Biol Interact ; 278: 141-151, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29042257

RESUMO

Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC0-24) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (Cmax) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), Cmax, was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC0-24 was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA-X with CYP2C9. PK parameters of AMLO were not significantly affected by pre-treatment of EL. Thereby our findings indicate that co-administration of GS with drugs that are metabolized by CYP2C9 and CYP1A2 could lead to potential HDI.


Assuntos
Anlodipino/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Gymnema sylvestre/química , Fenacetina/farmacocinética , Extratos Vegetais/química , Tolbutamida/farmacocinética , Administração Oral , Anlodipino/sangue , Anlodipino/química , Animais , Cromatografia Líquida de Alta Pressão , Etanol/química , Cromatografia Gasosa-Espectrometria de Massas , Gymnema sylvestre/metabolismo , Meia-Vida , Masculino , Espectrometria de Massas , Fenacetina/sangue , Fenacetina/química , Ratos , Ratos Wistar , Tolbutamida/sangue , Tolbutamida/química
19.
Clin Pharmacol Drug Dev ; 6(4): 363-376, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28067999

RESUMO

Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. In vitro assays indicate that lesinurad is an inducer of CYPs in the order CYP3A > CYP2C8 > CYP2C9 > CYP2C19 > CYP2B6 and an inhibitor of CYP2C8 and CYP2C9. To investigate the drug interaction potential of lesinurad, clinical drug interaction studies were conducted. Open-label studies in volunteers investigated the effects of single-/multiple-dose lesinurad on the pharmacokinetics of sildenafil and amlodipine (CYP3A4 induction), tolbutamide (CYP2C9 inhibition/induction), and repaglinide (CYP2C8 inhibition/induction). There was no apparent induction of CYP2C8 and CYP2C9 following repeated lesinurad administration, although no inhibition of CYP2C9 and modest inhibition of CYP2C8 were observed following single-dose lesinurad. Consistent with in vitro observations, lesinurad (200 mg once daily) was an inducer of CYP3A based on the effects on sildenafil exposure. Sildenafil exposure decreased by approximately 34% for Cmax and AUC when administered with multiple-dose lesinurad 200 mg and allopurinol 300 mg, relative to sildenafil alone. During lesinurad therapy, the possibility of reduced efficacy of concomitant drugs that are CYP3A substrates should be considered and their efficacy monitored because of induction of CYP3A by lesinurad.


Assuntos
Anlodipino/farmacocinética , Carbamatos/farmacocinética , Piperidinas/farmacocinética , Citrato de Sildenafila/farmacocinética , Tioglicolatos/administração & dosagem , Triazóis/administração & dosagem , Adulto , Área Sob a Curva , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Tioglicolatos/farmacologia , Tolbutamida/farmacocinética , Triazóis/farmacologia , Adulto Jovem
20.
Sci China Life Sci ; 60(2): 215-224, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26354504

RESUMO

This study explored the effects of cucurbitacin E (CuE), a bioactive compound from Cucurbitaceae, on the metabolism/pharmacokinetic of tolbutamide, a model CYP2C9/11 probe substrate, and hepatic CYP2C11 expression in rats. Liquid chromatography-(tandem) mass spectrometry (LC-MS/MS) assay was used to detect tolbutamide as well as 4-hydroxytolbutamide, and then successfully applied to the pharmacokinetic study of tolbutamide in rats. The effect of CuE on CYP2C11 expression was determined by western blot. CuE (1.25-100 µmol L-1) competitively inhibited tolbutamide 4-hydroxylation (CYP2C11) activity only in concentration-dependent manner with a K i value of 55.5 µmol L-1 in vitro. In whole animal studies, no significant difference in metabolism/pharmacokinetic of tolbutamide was found for the single pretreatment groups. In contrast, multiple pretreatments of CuE (200 µg kg-1 d-1, 3 d, i.p.) significantly decreased tolbutamide clearance (CL) by 25% and prolonged plasma half-time (T 1/2) by 37%. Moreover, CuE treatment (50-200 µg kg-1 d-1, i.p.) for 3 d did not affect CYP2C11 expression. These findings demonstrated that CuE competitively inhibited the metabolism of CYP2C11 substrates but had no effect on rat CYP2C11 expression. This study may provide a useful reference for the reasonable and safe use of herbal or natural products containing CuE to avoid unnecessary drug-drug interactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Fígado/efeitos dos fármacos , Esteroide 16-alfa-Hidroxilase/metabolismo , Triterpenos/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Hidroxilação , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Tolbutamida/análogos & derivados , Tolbutamida/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...